First-Principles/ab-initio Methods for HEDP

» Density-Functional Theory (DFT)

DFT versus the Schrédinger Equation
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‘Quantum many-body Schrédinger Equation: ‘
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The Kohn-Sham DFT equation can be iteratively solved

once the exchange-correlation functional is known
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W(ry s, o) = E¥(y 15, oo Ty)
All many-body effects are included in the effective potential via the
Exchange-Correlation functional, E, [n(r)].
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The form of the divine exchange-correlation functional is unknown.
We need to find good approximations.



» Path-Integral Monte-Carlo (PIMC)

PIMC,* based on the convolution of the density matrix,
uses the Monte Carlo method to efficiently evaluate
multidimensional integrations
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* The density matrix p(R, R’; T), introduced by J. von Neumann in
1927, describes the statistical distribution of a quantum system
in thermal equilibrium

p(R.R;T)= R le KT R =S @, (R)p, (R)e—En/kT
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* The convolution property of p(R, R"; T) can be written as
p(R.R:T)=(R|e-H/KT|R')= | dR,p(R.R;:2T)p(R,.R';2T)
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“D. M. Ceperley, Rev. Mod, Phys. &7, 279 (1995);
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PIMC allows simulations of quantum systems without
any assumptions beyond the Schrodinger equation at

finite temperature LR
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+ Once we knew p(R,R’;B), we can calculate the thermodynamic
properties of the system with the corresponding operators o:
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» Quantum Monte-Carlo (QMC)

Many-electron wave functions

e Hartree product

Wy = o (Xq)ia(Xa) .. (X )

! Slater determinant
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I. Single determinant Slater-Jastrow function
W DT = W 'D"l’_'f
where the Jastrow factor W 7 could be (for example)
U= exp(J),
T = S0 [0or) = Ulry) + T 8™y

and Us(rij) = ,—l (1—exp(—4)).

Diffusion Monte Carlo

# So use distribution (ensemble) of Brownian particles (‘walkers') to
represent W(R, 7). The Green's function (R, R',d7) is then interpreted
as the probability of a walker moving from point R’ to R in a time d7.
Branching factor determines population of walkers: In regions of high 1/,
walkers will be killed off; in low V' regions, walkers will multiply.

e How do we find Green's function G(R, R, §7)7 Consider Schrodinger
equation in two parts:

o Propagate distribution defined by Green's function in imaginary time. At
long times, excited states will decay away. Can then continue propagation

Diffusion Monte Carlo

e How do we propagate solution in imaginary time?

U(R,7+4d7) =

G(R, R, é7) (R, 7)dRN

Variational Monte Carlo

Trial many-body wave function W{ry, ..., ry) = ¥ (R)I
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Eero variance principle - as W tends to the exact wave function, the
fluctuations in £, tend to zero.l

Diffusion Monte Carlo
ansider imaginary time behaviour of time-dependent Schrédinger equation

, AU(R, 1)
(H . L,) (R, 1) — JTI
1

or eigenstate, general solution is clearly
H(R.1) = (R, 0)e =0

‘hen expand arbitrary W(R.7) in eigenfunctions of I

O
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Vwr _T rate equationll ubstitute if — 7 (imaginary time). Oscillatory behaviour becomes
o <ponential.

e Green's function for diffusion equation known: 3N dimensional Gaussian -

G(R,R.é1) =
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with variance 7 in each dimension.
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e Extra branching factor from rate equation.
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