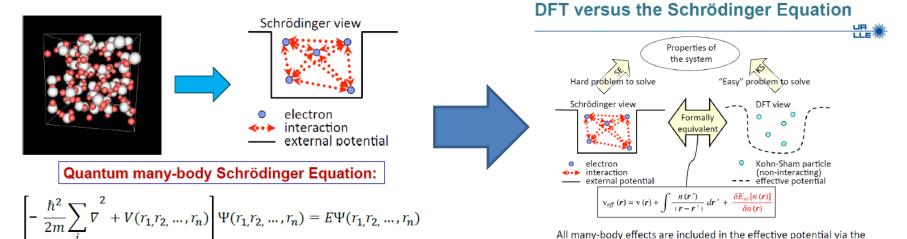
First-Principles/ab-initio Methods for HEDP

Density-Functional Theory (DFT)



Exchange-Correlation functional, $E_{xc}[n(r)]$.

The Kohn-Sham DFT equation can be iteratively solved once the exchange-correlation functional is known

$$\left(-\frac{\hbar^{2}}{2 m} \nabla^{2} + v_{eff}(\mathbf{r})\right) \psi_{v}(\mathbf{r}) = \epsilon_{v} \psi_{v}(\mathbf{r}) \quad v = 1, 2, \dots, N$$

$$n(\mathbf{r}) = \sum_{v=1}^{N} |\psi_{v}(\mathbf{r})|^{2}$$

$$v_{eff}(\mathbf{r}) = v(\mathbf{r}) + \int \frac{n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}' + \frac{\delta E_{xc}[n(\mathbf{r})]}{\delta n(\mathbf{r})}$$

The form of the divine exchange-correlation functional is unknown. We need to find good approximations.

Path-Integral Monte-Carlo (PIMC)

PIMC,* based on the convolution of the density matrix, uses the Monte Carlo method to efficiently evaluate multidimensional integrations

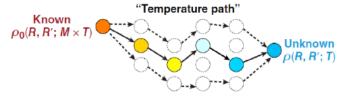
UR **

 The density matrix ρ(R, R'; T), introduced by J. von Neumann in 1927, describes the statistical distribution of a quantum system in thermal equilibrium

$$\rho(\boldsymbol{R},\boldsymbol{R}';\boldsymbol{T}) = \left\langle \boldsymbol{R} \,\middle|\, \mathrm{e}^{-\boldsymbol{H}/k\boldsymbol{T}} \,\middle|\, \boldsymbol{R}' \right\rangle = \sum_{n} \varphi_{n}\left(\boldsymbol{R}\right) \varphi_{n}\left(\boldsymbol{R}'\right) \mathrm{e}^{-\boldsymbol{E}_{n}/k\boldsymbol{T}}$$

• The convolution property of $ho(\mathbf{R},\mathbf{R}';\mathbf{T})$ can be written as

$$\rho(R,R';T) = \langle R \mid e^{-H/KT} \mid R' \rangle = \int dR_1 \rho(R,R_1;2T) \rho(R_1,R';2T)$$



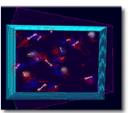
*D. M. Ceperley, Rev. Mod. Phys. <u>67</u>, 279 (1995);

B. Militzer, Ph.D. thesis, University of Illinois at Urbana-Champaign, 2000.

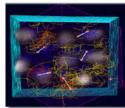
PIMC allows simulations of quantum systems without any assumptions beyond the Schrodinger equation at finite temperature

 Once we knew ρ(R,R';β), we can calculate the thermodynamic properties of the system with the corresponding operators ô:

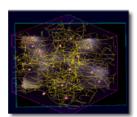
$$<\hat{O}> = \frac{\int dR \ dR' \langle R|\hat{O}|R'\rangle \langle R'|\rho|R\rangle}{\int dR \langle R|\rho|R\rangle}$$



Molecular liquid



Molecular metallic liquid



Metallic liquid

TG11492

Quantum Monte-Carlo (QMC)

Many-electron wave functions

Hartree product

$$\Psi_{\mathcal{H}} = \psi_1(\mathbf{x}_1)\psi_2(\mathbf{x}_2)\dots\psi_N(\mathbf{x}_N)$$

Slater determinant

$$\Psi_{\mathcal{D}} = \frac{1}{\sqrt{N_e}} \begin{vmatrix} \psi_1(\mathbf{x}_1) & \psi_1(\mathbf{x}_2) & \dots & \psi_1(\mathbf{x}_{N_e}) \\ \psi_2(\mathbf{x}_1) & \psi_2(\mathbf{x}_2) & & & \\ \vdots & & \ddots & & \\ \psi_{N_e}(\mathbf{x}_1) & & & \psi_{N_e}(\mathbf{x}_{N_e}) \end{vmatrix}$$

Single determinant Slater-Jastrow function

$$\Psi_{\mathcal{D},\mathcal{T}} = \Psi_{\mathcal{D}}\Psi_{\mathcal{T}}$$

where the Jastrow factor $\Psi_{\mathcal{T}}$ could be (for example)

$$\Psi_{\mathcal{J}} = \exp\left(\mathcal{J}\right),\,$$

$$\begin{split} \mathcal{J} &= \sum_{i \neq j}^{N_e} \left[-U_0(r_{ij}) - U(r_{ij}) + \sum_{n}^{N_n} S^n(\mathbf{r}_i, \mathbf{r}_j, r_{ij}) \right], \\ \text{and } U_0(r_{ij}) &= \frac{A}{r_{ii}} \left(1 - \exp\left(-\frac{r_{ij}}{F} \right) \right). \end{split}$$

Variational Monte Carlo

Trial many-body wave function $\Psi(\mathbf{r}_1,\ldots,\mathbf{r}_N) \equiv \Psi(\mathbf{R})$

$$E_{\rm VMC} = \frac{\int \Psi \hat{H} \Psi \, d\mathbf{R}}{\int \Psi^2 \, d\mathbf{R}} = \frac{\int \Psi^2 (\Psi^{-1} \hat{H} \Psi) \, d\mathbf{R}}{\int \Psi^2 \, d\mathbf{R}} \left(\equiv \int p(x) f(x) \, dx \right)$$

with

$$f(x) \equiv E_{\rm L} ~=~ \frac{\dot{H}\Psi}{\Psi} ~~({\rm "local~energy"}) ~~{\rm and}~ p(x) = \Psi^2 ~({\rm close~to~optimal})$$

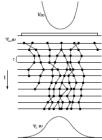
Generate M points distributed according to Ψ^2

$$E_{\rm VMC} \simeq \frac{1}{M} \sum_{i} E_{\rm L}(\mathbf{R}_i)$$

Zero variance principle - as Ψ tends to the exact wave function, the fluctuations in $E_{\rm L}$ tend to zero.

Diffusion Monte Carlo

- So use distribution (ensemble) of Brownian particles ('walkers') to represent $\Psi(\mathbf{R}, \tau)$. The Green's function $G(\mathbf{R}, \mathbf{R}', \delta \tau)$ is then interpreted as the probability of a walker moving from point R' to R in a time $\delta \tau$. Branching factor determines population of walkers: In regions of high V, walkers will be killed off; in low V regions, walkers will multiply.
- Propagate distribution defined by Green's function in imaginary time. At long times, excited states will decay away. Can then continue propagation and accumulate averages of observables

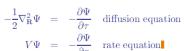


Diffusion Monte Carlo

How do we propagate solution in imaginary time?

$$\Psi(\mathbf{R}, \tau + \delta \tau) = \int G(\mathbf{R}, \mathbf{R}', \delta \tau) \Psi(\mathbf{R}', \tau) d\mathbf{R}'$$

• How do we find Green's function $G(\mathbf{R},\mathbf{R}',\delta\tau)$? Consider Schrödinger equation in two parts:



 \bullet Green's function for diffusion equation known: 3N dimensional Gaussian with variance $\delta \tau$ in each dimension.

$$G(\mathbf{R}, \mathbf{R}', \delta \tau) = (2\pi \delta \tau)^{-\frac{3N}{2}} \exp\left(-\frac{|\mathbf{R} - \mathbf{R}'|^2}{2\delta \tau}\right)$$

• Extra branching factor from rate equation

$$\times \exp\left[-\delta\tau \left(\frac{V(\mathbf{R}) + V(\mathbf{R}') - 2E_{\mathrm{T}}}{2}\right)\right]$$

Diffusion Monte Carlo

onsider imaginary time behaviour of time-dependent Schrödinger equation

$$\left(\hat{H} - E_T\right)\Psi(\mathbf{R}, t) = -\frac{\partial \Psi(\mathbf{R}, t)}{i\partial t}$$

or eigenstate, general solution is clearly

$$\phi(\mathbf{R}, t) = \phi(\mathbf{R}, 0)e^{-i(\hat{H}-E_T)t}$$

hen expand arbitrary $\Psi(\mathbf{R},t)$ in eigenfunctions of \hat{H}

$$\Psi(\mathbf{R},t) = \sum_{n=0}^{\infty} c_n \phi_n(\mathbf{R}) e^{-i(E_n - E_T)t}$$

ubstitute $it \to \tau$ (imaginary time). Oscillatory behaviour becomes cponential.

$$\Psi(\mathbf{R}, \tau) = \sum_{n=0}^{\infty} c_n \phi_n(\mathbf{R}) e^{-(E_n - E_T)\tau}$$

et time independence by choosing E_T to be ground state eigenvalue E_0 . s $\tau \to \infty$, $\Psi \to \text{ground state } \phi_0$.

$$\Psi(\mathbf{R},\tau) = c_0 \phi_0 + \sum_{n=1}^{\infty} c_n \phi_n(\mathbf{R}) e^{-(E_n - E_T)\tau}$$